폐쇄성 수면무호흡 수술은 성공률 예측이 매우 어렵다. 이때 인공지능을 이용하면 수술 성공률이 높은 환자들을 선별하는데 도움을 줄 수 있는 것으로 나타났다.
이런 가운데 서울대병원 김현직·동국대병원 김진엽 교수팀은 머신러닝으로 폐쇄성 수면무호흡 수술 성공을 예측할 수 있는 알고리즘을 개발했다고 14일 발표했다.
2010~2019년 수면무호흡 수술을 받은 환자 163명이 연구대상이었다. 연구팀은 수술 전후에 시행한 수면다원검사 결과를 토대로 수술 성공률을 분석했고, 수술 전 인공지능 프로그램 예측과 비교했다. 그 결과 인공지능으로 예측한 성공률은 실제 수술 성공률과 70%를 상회하는 일치도를 보였다.
폐쇄성 수면무호흡은 심각한 심혈관계 합병증이 있다. 이 때문에 양압기 치료를 포기한 환자는 다른 치료가 필요하고 수술이 좋은 선택이 될 수 있다.
폐쇄성 수면무호흡의 수술적 치료는 성공률이 중요하다. 서울대병원의 경우 약 70%라고 조사됐다. 그 때문에 수술 성공률이 높은 환자를 수술 전에 구별하는 것이 중요하지만 해부·생리학적 인자들을 모두 고려해야 하므로 예측이 쉽지 않다. 전통적인 예측모델이나 수술을 시행하는 의사의 주관적 성공률 예측은 정확도가 각각 54.2%, 52.2%로 낮았다.
연구팀은 연령, 편도선 크기, BMI, 수면 시간 등 결과 예측에 기여하는 다양한 인자를 조합해 서포트벡터머신(support vector machine), 랜덤 포레스트(random forest), 그래디언트 부스팅(gradient boosting) 등 세 가지 인공지능 모델을 해당 연구에 적용했다. 이 중 그래디언트 부스팅 모델은 정확도는 70.8%로 기존의 예측 방법보다 월등히 정확도가 높은 것으로 판명됐다.
김현직 교수(이비인후과)는 "폐쇄성 수면무호흡 수술의 적절한 환자 선택은 중요하지만 성공 예측이 어려운 과제인데, 인공지능이 정확성을 높일 수 있다"고 연구 의의를 밝혔다. 이어 "인공지능은 스스로 학습을 해서 알고리즘을 발달시킨다. 분석대상이 많아지면 현재의 정확도는 더 높아지고 최적의 치료방법을 찾는데 도움이 될 것"이라고 설명했다.
이 연구 결과를 토대로 향후 진료실에서 직접 인공지능 분석을 진행하면 불필요한 치료를 줄이고 성공률 높은 치료를 제공할 수 있을 것으로 기대된다.
이번 연구는 네이처의 자매 국제 학술지 '사이언티픽 리포트(Scientific Report)' 최근호에 발표됐다.
장종호 기자 bellho@sportschosun.com
|
▶재테크 잘하려면? 무료로 보는 금전 사주