머신러닝(기계학습) 및 AI(인공지능) 관련 기술은 질병 진단의 정확도를 높이는 데에도 도움을 주는 것을 넘어, 미래의 환자 상태 및 나아가 사망까지도 예측해 이를 예방하는 것에도 활용된다.
연구팀은 잘 알려진 폐암 예후 인자(연령, 성별, 병기요인, 종양의 특성 등)외에도 삶의 질과 생활습관 정보(불안, 우울, 삶의 질, 긍정적 성장 및 과체중)들이 실제로 암 생존자들의 5년 이후의 생존예측력을 높일 수 있는지를 중점적으로 연구했으며, 이에 대한 예측정확도를 높이고자 머신러닝 알고리즘을 적용했다. 그동안 폐암 환자를 대상으로 삶의 질과 사망 위험 간의 상관성을 장기간에 걸쳐 분석해, 머신러닝 및 AI등의 알고리즘을 적용해 사망 예측모형으로까지 만든 연구는 거의 없었다.
모든 수치계산이 완료되었을 때, 암 생존자들이 기존의 예후인자들만 고려한 랜덤포레스트(Random Forest) 모델과 아다부스트(Adaptive Boosting) 모델은 암 생존자들의 5년 생존여부를 약 69.1% 와 71.3%만 정확하게 예측하는 수준인 반면, 삶의 질 및 생활습관을 고려한 랜덤포레스트 알고리즘 및 아다부스트 모델은 폐암 생존자 5년 생존여부의 94.1% 와 94.8%를 정확하게 식별해 보다 정확한 예측을 제공했다.
심진아 박사는 "머신러닝기술을 이용한 암 생존자들의 생존 예측 시 기존의 임상정보에 삶의 질 및 생활습관 정보를 추가했을 때 5년 생존율을 훨씬 정확하게 예측할 수 있음을 확인했다"며 "이러한 삶의 질 요인을 포함한 예측모형은 ICT 기술과 융합되어, 실제 생존자들의 자가 관리를 도울 수 있으며, 향후 유전자 분석을 기반으로 한 정밀의학에서도 삶의 질 정보가 신중히 고려돼야 한다"고 말했다.
국내 암경험자가 170만 명을 넘었고, 5년 넘는 암 생존자가 100만명을 넘은 가운데, 대부분의 환자는 치료 후에는 재발 여부를 확인하는 것 이외에는 적절한 관리를 받지 못해 암 재발이나 사망에 대한 막연한 불안을 가지고 있다. 윤영호 교수는 "암 치료 후 재발 감시뿐 아니라 운동, 식이 등과 함께 삶의 질을 평가하고 체계적으로 관리할 수 있도록, 사망 예측 및 관리 모형을 포함한 통합케어 시스템을 갖추는 것이 시급하다. 그리고 이에 대한 보험수가 인정 등 국가 차원의 지원이 반드시 이뤄져야 한다"고 밝혔다.
이 연구 결과는 네이처 계열의 권위 학술지인 'Scientific Report' 최근호에 게재했다.
장종호 기자 bellho@sportschosun.com
무료로 보는 오늘의 운세
"아직 대어는 없다" 7파전 신인왕 경합...팀성적도 고려대상?





