|
[스포츠조선 장종호 기자] 혈관 CT 검사 결과로 관상동맥질환 진단과 함께 미래 심장질환 발생 위험까지 예측하는 딥러닝 모델이 개발됐다.
급성 흉통으로 응급실을 찾는 환자에게는 빠르고 정확한 관상동맥질환 진단과 함께 미래에 발생할 수 있는 심장질환의 가능성을 평가하는게 중요하다. 이러한 진단과 위험을 평가하기 위해 CT 혈관조영술을 실시하고 있지만 결과 판독이 나오기까지 오랜 시간이 걸리고 판독자에 따라 해석이 달라질 수 있다는 한계가 있다.
연구팀은 인공지능 딥러닝 기술을 이용해 관상동맥 협착을 자동으로 판독하고 협착 정도에 따라 정상, 비폐색성(협착 50% 미만), 폐색성(협착 50% 이상) 세 그룹으로 분류하는 모델을 개발하고 정확성을 살폈다.
딥러닝 모델의 유효성을 검증하기 위해 전체 환자의 심장 사건 발생을 평균 2년 6개월 간 추적 관찰했다. 환자 중 15%가 심근경색, 불안정 협심증 등으로 입원과 사망을 겪었다. 특히, 폐색성 환자군의 발생률은 38.8%로 정상군(0.6%), 비폐색성군(3.2%)보다 크게 높았다.
미래 심장질환 발생 위험을 따질 때 고지혈증이나 심장 효소 수치인 트로포닌-T 등 기존 위험인자와 비교해 딥러닝이 분석한 폐색성 정도가 가장 유효한 지표라는 것도 나타났다. 또 딥러닝이 기존 위험인자에 관상동맥 폐색성을 추가해 미래 심장질환 발생 위험을 분석하면 기존 위험인자만 가지고 분석했을 때(판별력 80%)보다 위험도 판별력이 14% 향상했다.
허진 교수는 "이번 연구로 빠른 진단과 치료 결정이 중요한 응급실에서 단순히 관상동맥질환의 유무를 판별하는 것을 넘어 환자 예후까지 예측하는데 딥러닝 모델을 적용할 수 있다는 가능성을 제시했다"며 "인공지능 기술이 단순한 진단 보조를 넘어 임상 의사결정 지원 도구로 확장할 수 있다는 것을 확인했다"고 말했다.
장종호 기자 bellho@sportschosun.com
|